Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
HESS cover
Executive editors:
Erwin
 
Zehe
,
Hannah
 
Cloke
,
Alberto
 
Guadagnini
 &
Alison D.
 
Reeves

Hydrology and Earth System Sciences (HESS) is an international two-stage open-access journal for the publication of original research in hydrology, placed within a holistic Earth system science context. HESS encourages and supports fundamental and applied research that seeks to understand the interactions between water, earth, ecosystems, and humans. A multi-disciplinary approach is encouraged that enables a broadening of the hydrologic perspective and the advancement of hydrologic science through the integration with other cognate sciences, and the cross-fertilization across disciplinary boundaries.

News

New Journal Impact Factors released

15 Jun 2017

Clarivate Analytics has published the latest Journal Citation Reports®.

New licence & copyright agreement

06 Jun 2017

From 6 June onwards, all newly submitted articles, if accepted for publication, will be distributed under the Creative Commons Attribution 4.0 International License.

New display and citation guidelines for DOIs

06 Jun 2017

To make it as easy as possible for users without technical knowledge to cut and paste or click to share DOIs, CrossRef has changed the display and citation guidelines for DOIs from "doi:10.5194/abcd" to "https://doi.org/10.5194/abcd".

Highlight articles

In 2015 large parts of Europe were affected by a drought. In terms of low flow magnitude, a region around the Czech Republic was most affected, with return periods > 100 yr. In terms of deficit volumes, the drought was particularly severe around S. Germany where the event lasted notably long. Meteorological and hydrological events developed differently in space and time. For an assessment of drought impacts on water resources, hydrological data are required in addition to meteorological indices.

Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong

This paper analyses the European summer drought of 2015 from a climatological perspective, including its origin and spatial and temporal development, and how it compares with the 2003 event. It discusses the main contributing factors controlling the occurrence and persistence of the event: temperature and precipitation anomalies, blocking episodes and sea surface temperatures. The results represent the outcome of a collaborative initiative of members of UNESCO's FRIEND-Water program.

Monica Ionita, Lena M. Tallaksen, Daniel G. Kingston, James H. Stagge, Gregor Laaha, Henny A. J. Van Lanen, Patrick Scholz, Silvia M. Chelcea, and Klaus Haslinger

During August 2016, heavy precipitation led to devastating floods in south Louisiana, USA. Here, we analyze the climatological statistics of the precipitation event, as defined by its 3-day total over 12–14 August. Using observational data and high-resolution global coupled model experiments, we find for a comparable event on the central US Gulf Coast an average return period of about 30 years and the odds being increased by at least 1.4 since 1900 due to anthropogenic climate change.

Karin van der Wiel, Sarah B. Kapnick, Geert Jan van Oldenborgh, Kirien Whan, Sjoukje Philip, Gabriel A. Vecchi, Roop K. Singh, Julie Arrighi, and Heidi Cullen

In this study a comprehensive model was developed that combines numerical schemes with high-order accuracy for solution of the advection–dispersion equation considering transient storage zones term in rivers. In developing the subjected model (TOASTS) to achieve better accuracy and applicability, irregular cross sections and unsteady flow regimes were considered. For this purpose the QUICK scheme, due to its high stability and low approximation error, has been used for spatial discretization.

Maryam Barati Moghaddam, Mehdi Mazaheri, and Jamal MohammadVali Samani

The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were thought to be located in areas of substantial groundwater discharge to the river. Physical, thermal, and geophysical methods applied at several spatial scales indicate that DWM are located within or directly downstream of areas of substantial groundwater discharge to the river. DWM may depend on groundwater discharge for their survival.

Donald O. Rosenberry, Martin A. Briggs, Emily B. Voytek, and John W. Lane

Publications Copernicus