Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
HESS cover
Executive editors:
Alison D.

Hydrology and Earth System Sciences (HESS) is an international two-stage open-access journal for the publication of original research in hydrology, placed within a holistic Earth system science context. HESS encourages and supports fundamental and applied research that seeks to understand the interactions between water, earth, ecosystems, and humans. A multi-disciplinary approach is encouraged that enables a broadening of the hydrologic perspective and the advancement of hydrologic science through the integration with other cognate sciences, and the cross-fertilization across disciplinary boundaries.


Update of publication policy

04 Jul 2017

The updated publication policy now is extended by the journal's open access statement, its archiving and indexing scheme, and explicit policies on corrections and retractions.

Revision of editors', referees', and authors' obligations

29 Jun 2017

The general obligations for editors, referees, and authors have been revised to give advice for the appropriate handling of literature suggestions.

New Journal Impact Factors released

15 Jun 2017

Clarivate Analytics has published the latest Journal Citation Reports®.

Highlight articles

In this study we provide a numerical quantification of changes in flood hazard in the Vietnamese Mekong Delta as a result of dyke development. Other important drivers to the alteration of delta flood hazard are also investigated, e.g. tidal level. The findings of our study are substantial valuable for the decision makers in Vietnam to develop holistic and harmonized floods and flood-related issues management plan for the whole delta.

Nguyen Van Khanh Triet, Nguyen Viet Dung, Hideto Fujii, Matti Kummu, Bruno Merz, and Heiko Apel

Water supply forecasts are critical to support water resources operations and planning. The skill of such forecasts depends on our knowledge of (i) future meteorological conditions and (ii) the amount of water stored in a basin. We address this problem by testing several approaches that make use of these sources of predictability, either separately or in a combined fashion. The main goal is to understand the marginal benefits of both information and methodological complexity in forecast skill.

Pablo A. Mendoza, Andrew W. Wood, Elizabeth Clark, Eric Rothwell, Martyn P. Clark, Bart Nijssen, Levi D. Brekke, and Jeffrey R. Arnold

Fruits take up soil water as they grow, and thus the fruit water is related to the rain or irrigation the crop receives. We used a novel sampling system to measure the stable isotopes of H and O in the fruit water to determine its geographic origin by comparing it to maps of isotopes in rain. We used this approach to teach an audience of science students and teachers about water cycle concepts and how humans may modify the water cycle through agriculture and irrigation water diversions.

Erik Oerter, Molly Malone, Annie Putman, Dina Drits-Esser, Louisa Stark, and Gabriel Bowen

Precipitation measurements were combined from eight separate precipitation testbeds to create multi-site transfer functions for the correction of unshielded and single-Alter-shielded precipitation gauge measurements. Site-specific errors and more universally applicable corrections were created from these WMO-SPICE measurements. The importance and magnitude of such wind speed corrections were demonstrated.

John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Samuel Buisan, Timo Laine, Gyuwon Lee, Jose Luis C. Aceituno, Javier Alastrué, Ketil Isaksen, Tilden Meyers, Ragnar Brækkan, Scott Landolt, Al Jachcik, and Antti Poikonen

In 2009, the "planetary boundaries" were introduced. They consist of nine global control variables and corresponding "thresholds which, if crossed, could generate unacceptable environmental change". The idea has been very successful, but also controversial. This paper picks up the debate with regard to the boundary on "global freshwater use": it argues that such a boundary is based on mere speculation, and that any exercise of assigning actual numbers is arbitrary, premature, and misleading.

Maik Heistermann

Publications Copernicus