Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
HESS cover
Executive editors:
Erwin
 
Zehe
,
Hannah
 
Cloke
,
Alberto
 
Guadagnini
 &
Alison D.
 
Reeves

Hydrology and Earth System Sciences (HESS) is an international two-stage open-access journal for the publication of original research in hydrology, placed within a holistic Earth system science context. HESS encourages and supports fundamental and applied research that seeks to understand the interactions between water, earth, ecosystems, and humans. A multi-disciplinary approach is encouraged that enables a broadening of the hydrologic perspective and the advancement of hydrologic science through the integration with other cognate sciences, and the cross-fertilization across disciplinary boundaries.

News

New institutional agreement between the PIK and Copernicus Publications

24 Aug 2017

Authors from the Potsdam Institute for Climate Impact Research (PIK) will profit from a new institutional agreement with Copernicus Publications starting 23 August 2017. The agreement which is valid for the first author enables a direct settlement of article processing charges (APCs) between the PIK and the publisher.

Update of publication policy

04 Jul 2017

The updated publication policy now is extended by the journal's open access statement, its archiving and indexing scheme, and explicit policies on corrections and retractions.

Revision of editors', referees', and authors' obligations

29 Jun 2017

The general obligations for editors, referees, and authors have been revised to give advice for the appropriate handling of literature suggestions.

Highlight articles

The research presented here provides the first evaluation of the skill of a seasonal hydrological forecast for the UK. The forecast scheme combines rainfall forecasts from the Met Office GloSea5 forecast system with a national-scale hydrological model to provide estimates of river flows 1 to 3 months ahead. The skill in the combined model is assessed for different seasons and regions of Britain, and the analysis indicates that Autumn/Winter flows can be forecast with reasonable confidence.

Victoria A. Bell, Helen N. Davies, Alison L. Kay, Anca Brookshaw, and Adam A. Scaife

In this study we provide a numerical quantification of changes in flood hazard in the Vietnamese Mekong Delta as a result of dyke development. Other important drivers to the alteration of delta flood hazard are also investigated, e.g. tidal level. The findings of our study are substantial valuable for the decision makers in Vietnam to develop holistic and harmonized floods and flood-related issues management plan for the whole delta.

Nguyen Van Khanh Triet, Nguyen Viet Dung, Hideto Fujii, Matti Kummu, Bruno Merz, and Heiko Apel

Water supply forecasts are critical to support water resources operations and planning. The skill of such forecasts depends on our knowledge of (i) future meteorological conditions and (ii) the amount of water stored in a basin. We address this problem by testing several approaches that make use of these sources of predictability, either separately or in a combined fashion. The main goal is to understand the marginal benefits of both information and methodological complexity in forecast skill.

Pablo A. Mendoza, Andrew W. Wood, Elizabeth Clark, Eric Rothwell, Martyn P. Clark, Bart Nijssen, Levi D. Brekke, and Jeffrey R. Arnold

Fruits take up soil water as they grow, and thus the fruit water is related to the rain or irrigation the crop receives. We used a novel sampling system to measure the stable isotopes of H and O in the fruit water to determine its geographic origin by comparing it to maps of isotopes in rain. We used this approach to teach an audience of science students and teachers about water cycle concepts and how humans may modify the water cycle through agriculture and irrigation water diversions.

Erik Oerter, Molly Malone, Annie Putman, Dina Drits-Esser, Louisa Stark, and Gabriel Bowen

Precipitation measurements were combined from eight separate precipitation testbeds to create multi-site transfer functions for the correction of unshielded and single-Alter-shielded precipitation gauge measurements. Site-specific errors and more universally applicable corrections were created from these WMO-SPICE measurements. The importance and magnitude of such wind speed corrections were demonstrated.

John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Samuel Buisan, Timo Laine, Gyuwon Lee, Jose Luis C. Aceituno, Javier Alastrué, Ketil Isaksen, Tilden Meyers, Ragnar Brækkan, Scott Landolt, Al Jachcik, and Antti Poikonen

Publications Copernicus